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Abstract 

An extension of existing structure-factor formalisms 
for anharmonic thermal motion in crystals and the 
corresponding one-particle potentials is presented 
and applied to ordered and disordered structures. A 
generalized probability density function (joint p.d.f.) 
is introduced and it is first shown that anharmonic 
temperature factors ('thermal motion') and split posi- 
tions ('disorder') are mathematically equivalent in 
describing electron or nuclear densities. When proba- 
bility densities are interpreted in terms of an effective 
one-particle potential, however, ordered and disor- 
dered structures show different behaviour. For 
ordered structures the effective one-particle potentials 
are found to be almost independent of temperature; 
for disordered structures one obtains a temperature- 
dependent pseudo potential. The different tem- 
perature dependence can be used to distinguish 
between order and disorder. Pseudo potentials are 
calculated for several types of disorder and compared 
with potentials derived from X-ray or neutron diffrac- 
tion experiments. 

Introduction 

Anharmonic thermal motion of atoms (or ions) in 
crystals can be studied with the aid of accurate elastic 
X-ray or neutron diffraction. The measured intensities 
contain information about the average distribution 
of atoms around their equilibrium positions (i.e. the 
probability density function p.d.f.) and allow the 
determination of the effective one-particle potential 
(OPP) in which the atoms are moving (Dawson, Hur- 
ley & Maslen, 1967; Willis, 1969; Willis & Pryor, 
1975; Mair, 1980; Zucker & Schulz, 1982a). 

A particularly interesting group of materials with 
high anharmonic thermal motion is formed by ionic 

conductors, which have been extensively studied in 
recent years [e.g. AgI (Cava, Reidinger & Wuensch, 
1977), Li3N (Zucker & Schulz, 1982b), Ag3SI (Peren- 
thaler, Schulz & Beyerle, 1981), RbAg415 (Kuhs, 
1983)]. The OPPs allow estimation of the potential 
barrier for ionic motion and it compares well with 
the activation energy of conductivity. Thus one has 
for this special type of material another experimental 
test for the potential derived from a diffraction 
experiment. 

For some ionic conductors, however, we found a 
great difference between the activation energy and, 
in addition, a strongly temperature dependent poten- 
tial. This result cannot be understood using the usual 
concepts of a p.d.f, and the corresponding OPP. The 
necessary extensions of these concepts include the 
effects of disorder and will be presented hereafter. 

The joint probability density function (PDI0 

For an isolated atom vibrating around a given equili- 
brium position, the one-particle p.d.f, is the average 
in space and time of the probability of finding the 
atom in a volume element around its equilibrium 
position. The p.d.f, is then the Fourier transform of 
the temperature factors (harmonic or anharmonic) 
associated with this position which are obtained from 
the measured intensities (Willis, 1969; Johnson & 
Levy, 1974). This definition of the p.d.f, is only mean- 
ingful if different p.d.f.s do not overlap so that elec- 
tron or nuclear densities can uniquely be assigned to 
one position, i.e. if the p.d.f.s are immeasurably small 
between two positions. 

In some cases the amplitudes of thermal motion 
become comparable with the distance between two 
positions. Examples are ionic conductors with a 
continuous distribution of mobile ions along the 
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conduction path and disordered structures with split 
positions. This leads to densities between different 
positions which cannot be unambiguously assigned 
to one position, and single positions then overlap. 
The sum of all contributions of single p.d.f.s, however, 
is unique and we therefore introduce the joint proba- 
bility density function (PDF) which is given by the 
following formula: 

PDFk(r) = Z, W,k pdf,k(r) ; (1) 

k is the type of atom, Wik is the occupancy of position 
i by an atom type k, and the sum Y~i is taken over all 
positions that can be occupied by atoms of type k. 
PDFk is the probability of finding an atom of type k 
in a volume element of the crystal. Its integral over 
one unit cell is equal to the number of atoms of type 
k per unit cell (the integral for each p.d.f, is equal to 
1). [The program M U L P D F  was written to calculate 
the joint-p.d.f. This program is obtainable as part of 
the program system P R O M E T H E U S  (Zucker, Peren- 
thaler, Kuhs, Bachmann & Schulz, 1983)]. 

The ambiguity in determining single p.d.f.s leads 
to high correlations between positional and thermal 
parameters of different positions during the refine- 
ment and the errors on these parameters are rather 
high. The PDF, however, is not affected by these 
correlations and can be accurately determined. 

As for single p.d.f.s, the physical significance of 
the joint p.d.f, has to be checked throughout the 
refinement. Large negative values of a p.d.f, are mean- 
ingless and show that the present model is wrong. In 
some cases the PDF is still positive although the single 
p.d.f.s have large negative regions. In this case the 
negative regions of the single p.d.f.s have no signific- 
ance and merely reflect the fact that, in the case of 
overlap, single p.d.f.s cannot be uniquely determined. 

The PDF is closely related to the partial Fourier 
densities obtained from neutron data. Although the 
PDF can only be calculated with the aid of a model, 
it has many advantages compared with Fourier 
densities: 

(1) It can be derived from a limited data set 
because it is the density of a model fitted to measured 
data. (Accuracy and resolution are, of course, not 
higher than those of a Fourier density. With a few 
reflections missing, however, Fourier densities are no 
longer interpretable.) 

(2) It is not affected by termination effects, such 
as termination ripples. 

(3) The Fourier transform of the temperature fac- 
tors is analytical. 

(4) Quasi nuclear densities can be derived from 
X-ray data. 

Apart from its original use, the joint p.d.f, provides 
a convenient method of extending any given formal- 
ism which can describe anharmonic distributions. The 
superposition ofp.d.f.s weighted with the correspond- 
ing occupancy can be viewed as another way to write 

down an expansion (Appendix 1). Instead of 
introducing anharmonic parameters of higher order, 
one can introduce extra positions in the refinement 
(Mair, 1982a). These extra positions are not equili- 
brium positions that can be occupied by an atom, but 
merely a mathematical aid. This 'expansion', 
however, is not unique (Appendix 1). Furthermore, 
each extra position can be refined anharmonically. 
This opens a wide variety of different ways to describe 
the same joint p.d.f. 

Not only can anharmonic temperature factors be 
described by extra positions, but conversely the joint 
p.d.f, of split positions, where different positions lie 
close together, can be described by anharmonic tem- 
perature factors. This demonstrates that one cannot 
distinguish between ordered and disordered struc- 
tures with just one data set measured at only one 
temperature. 

Since the description of a p.d.f, with extra positions 
is not unique, one often encounters high correlations 
during the refinement of split positions; in this case 
the refinement of anharmonic temperature factors is 
usually easier. Extra positions have to be used, 
however, if the highest anharmonic order one can 
refine proves to be insufficient. For example, sixth- 
order anharmonic temperature factors were not 
sufficient for the description of the fluorine distribu- 
tion in fl-lead fluoride at high temperatures (Bach- 
mann & Schulz, 1983). The continuous distribution 
of mobile ions in ionic conductors can only be 
described with the aid of several positions which may 
be symmetrically equivalent. 

As an example of an experimental PDF we present 
the distribution of the silver ions in the/3 phase of 
Ag3SI. This phase is cubic (space group Pm3m) with 
sulphur and iodine occupying the centre and corners 
of the cube and silver occupying positions near the 
centre of the cube faces. From the refined structure 
parameters of Perenthaler (1981) and Perenthaler, 
Schulz & Beyerle (1981), we calculated the PDF of 
the silver ions at 493K (Fig. 1). The PDF shows the 
conduction path which could not be obtained from 
single p.d.f.s or difference Fourier maps. 

Fig. 1. Joint p.d.f, of silver in fl-Ag3SI at 493 K in the {200} planes. 
Contour lines: 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 .~-3. 
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Perenthaler et al. (1981) have already refined two 
models for the silver distribution: one model with 
one silver position at the face centre { 1/2, I/2, 0} and 
anharmonic temperature factors up to sixth order and 
a second model with four split positions (atomic 
positions 1/2, x, 0} x-'-.45) and anharmonic tem- 
perature factors up to third order~ For low tem- 
peratures they obtained a slightly better fit with the 
split model (ratio of Rws* ranging between 1.05 and 
1.1), for higher temperatures the anharmonic model 
was better (ratio of Rws between 0.92 and 0.65). A 
comparison of the PDF's of both models (see Fig. 2) 
shows that they are very similar, demonstrating the 
(mathematical) equivalence of the two models. 

The effective one-particle potential 

The effective one-particle potential is an average 
potential energy of an atom caused by the interaction 
with all the other atoms of the crystal. The time 
average over all possible configurations of the other 
atoms leads to a potential that depends only on the 
position of one atom. 

In the classical regime (at temperatures above the 
Debye temperature), the effective one-particle poten- 
tial of an isolated atom is related to the p.d.f, by the 
following formula (Willis, 1969): 

V(r )=  Vo-kT ln[pd f ( r ) ] ,  (2) 

k is the Boltzmann constant, T is the absolute tem- 
perature. 

Forumula 2 is now extended to the joint p.d.f. This 
extension is straightforward if anharmonic thermal 
vibrations are artificially described by additional 
positions. In this case the joint p.d.f, is only a way 
to write down an expansion and has the same physical 

2 W ( F o b  s --  Fcalc)  2 

* Rw = Y wF2bs 

meaning as a single p.d.f. The potential remains the 
effective one-particle potential for isolated atoms. 
Potentials from single p.d.f.s have no physical mean- 
ing in this case because the extra positions are a 
mathematical aid. 

In all other cases, the potential defined by the joint 
p.d.f, and (2) is no longer the potential of an isolated 
atom. For the interpretation of this potential one has 
to distinguish between ordered structures (dynamic 
disorder due to thermal vibrations only) and disor- 
dered structures (in addition to thermal vibrations, 
static deviations from the crystal symmetry). 

Ordered structures 

For ordered structures, the effective one-particle 
potential derived from the joint p.d.f, is very similar 
to the usual effective one-particle potential. For 
regions where the single p.d.f.s do not overlap, the 
potential of the joint p.d.f, is, apart from the arbitrary 
constant Vo, equal to the potentials of the single 
p.d.f.s. Where single p.d.f.s do overlap, the joint p.d.f. 
gives a unique value for the potential. 

One can now determine the potential along the 
conduction path of an ionic conductor and calculate 
the potential barrier. A good example is lithium 
nitride (Li3N). It is a nearly ordered fast ion conduc- 
tor, with defect concentrations below 2% (Zucker & 
Schulz, 1982b; Bell, Breitschwerdt & Van Alpen, 
1981). The potentials calculated from single p.d.f.s 
and the joint p.d.f, are shown together in Fig. 3. The 
two potentials are equal in the region where single 
p.d.f.s do not overlap; near the potential barrier, 
where they overlap, the single p.d.f.s give values 
which are too high (e.g. 0-32 eV at the potential bar- 
rier). The potential barrier obtained with the joint 
p.d.f., however, has a value of 0.27(3)eV which is 
very close to the activation energy of conductivity of 
0.25(2) eV (Bell et al., 1981). 

I 

Q2-"" 
(a) (b) 

Fig. 2. Distribution of silver in /3-Ag3SI at 493 K in the {100} 
planes. Contour  lines: 16, 32, 64, 128, 256, 512 ~,-3. (a) PDF 
from four split positions [atomic positions (0.5, + x, 0), ( + x, 0.5, 
0), x---0.45]. Split positions were refined with third-order tem- 
perature factors. (b) P.d.f. from one position at (0.5,0.5,0)  
refined with temperature factors up to sixth order. 
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Fig. 3. Effective one-particle potential of the Li(2) ions in Li3N 
along the conduction path (direction [110]) at T = 888 K. The 
straight line indicates the activation energy of conductivity. Solid 
line: potential from the joint p.d.f. Broken line: Potentials from 
single p.d.f.s. 
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Disordered structures 

For disordered structures the content of some unit 
cells differs from the content of other unit cells. Elastic 
diffraction data, however, give only the average con- 
tent of all unit cells and p.d.f.s that are the average 
over the different p.d.f.s of all unit cells. Because of 
this spatial average, the potential derived from the 
diffraction experiment does not give the average 
potential energy of the ions, but it is a pseudo poten- 
tial which is broader than the real average potential. 
The form of the pseudo potential and its temperature 
dependence is different for the case that the positions 
can be resolved in a Fourier transform of the p.d.f. 
map or the case that some positions are so close 
together compared with the thermal vibrations that 
the average p.d.f, has only one maximum. 

The pseudo potential in the case of resolved positions 

It should be noted that, in this case, it is possible to 
determine the potential difference between symmetri- 
cally inequivalent sites. If all sites are underoccupied, 
the occupation of each position will adjust itself 
according to the potential difference and the tem- 
perature. The potential difference between two sites 
is then given by 

V ( x , )  - V ( x 2 )  = - k T  In [ w , p d f , ( x , ) / w 2 p d f 2 ( x = ) ] .  

(3) 

it is impossible to determine the density in one chain 
at the potential barrier for a motion along this chain; 
the apparent potential barrier of the pseudo potential 
is much too low (for this model the factor is 1/2 or 
less). 

With increasing temperature the pseudo potential 
becomes flatter and less information can be obtained 
from it. The distribution in one chain and near a 
potential minimum is approximated by the single 
p.d.f, which can therefore be used to estimate the 
potential in a chain. 

An example of this case is the high-temperature 
phase of CuTeBr, a very anisotropic ionic conductor 
with a preferred one-dimensional conduction along 
the c axis (Bachmann, Kreuer, Rabenau & Schulz, 
1982). The mobile ions are arranged in chains parallel 
to the c axis; the arrangement of the ions, however, 
is different for different chains. In the averaged struc- 
ture, densities of different chains overlap in a very 
similar way to that described in the model above. A 
great difference had been found between the activa- 
tion energy of conductivity (0.25eV) and the potential 
barrier obtained from the joint p.d.f. (0.10 eV) or 
from a connection of the potentials of single p.d.f.s 
(0.13 eV, Fig. 5). This difference can now be explained 
by the averaging of densities of different chains 
obtained in the diffraction experiment. 

In three dimensions the situation is, in principle, 
the same if one substitutes the different chains by 
different ordered regions. 

One has to take into account, however, the limited 
accuracy of single p.d.f.s where they overlap. 

The pseudo potential was calculated for a simple 
model consisting of two types of one-dimensional 
chains which overlap in the averaged structure. The 
potential was assumed to be sinusoidal in each chain 
and the arrangement of atoms within one chain to 
be ordered. The atomic positions in half of the 
chains were at 0.25 {corresponding to a potential 
VI=Vo cos[2"rr(x/a-0.25)] and at 0.75 (V2 = 
V0 cos [2rr(x/a -0.75)]} in the other chains (Fig. 4a). 
(One could also assume only local order within one 
chain over a few unit cells. The averaging process 
would then be over different parts of one chain instead 
of over different chains). The pseudo potential was 
then obtained from the joint p.d.f, of the averaged 
structure using (2). 

The pseudo potential is shown in Fig. 4(b). At low 
temperatures the densities remain concentrated near 
the potential minima and at points where the density 
is very large in one chain it is very low in the other 
chain. The pseudo potential near 0.25 is very close 
to the potential in the first chain and the pseudo 
potential near 0.75 very close to the potential in the 
second chain. One can therefore obtain the potential 
of either chain near the potential minima, but one 
cannot follow this potential very far and, in particular, 

t H A N 2  

1 2 x / a  

c.A,. , v ~ / 
, t 

I 2 x / a  

Ca) 

.,. i x 
i x / ", 

/ x t I \ / \ ,. ,, 

/ ,, i 

/ \"x O~/' ' 
Vo{ """" 

0"25 0"5 0'75 x /a  

(b) 
Fig. 4. (a) Potential within the different types of chains. (b) Pseudo 

potential for the averaged structure: (0) the broken line indicates 
the real potential in each chain; (1) T =  0 K; (2) Vo/kT= 2; (3) 
Vo/kT = 1 ; (4) Vo/kT = 0.5; (5) Vo/kT = 0-2. V 0 is the maximum 
potential barrier that can be derived in a diffraction experiment 
for this model. 
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Unresolved split positions 

For split positions, the distances between different 
positions become comparable to the vibrational 
amplitudes of the atoms so that a single position 
cannot be resolved as a separate maximum in a Four- 
ier transform or p.d.f, map. 

The pseudo potential was calculated for a simple 
split model as a function of temperature as shown in 
Fig. 6. The split model has two positions. The poten- 
tial of an atom at either position is assumed to be 
harmonic and independent of temperature. The 
pseudo potential is again obtained from the joint 
p.d.f, of the averaged structure. 

The pseudo potential shows a strong temperature 
dependence. At low temperatures (compared with the 
potential energy of an atom midway between the two 
positions Vb) the pseudo potential shows a maximum 
between the two positions. This maximum decreases 
with increasing temperature very similar to the case 
considered above. At T= Vb/k In 2, however, this 
maximum vanishes and the pseudo potential has only 
one minimum which is very fiat. With still increasing 
temperature, the pseudo potential becomes steeper 
and finally, as the temperature goes to infinity, it 
assumes the same form as the original potential in 
which an atom at one of the positions is moving 
(Appendix 2). 

This behaviour of the pseudo potential is charac- 
teristic for all split models. A resolution of a single 
position is only possible at temperatures below T = 
Vb/k In (n), where n is the number of split positions. 
At high temperatures the static displacements of the 
split positions from their centre of gravity become 
less and less important compared with the thermal 
vibrations, and the pseudo potential with a minimum 
at the centre of gravity begins to resemble more and 
more the real potential at one of the split positions 
(Appendix 2). 

The static displacements of split positions add a 
constant term to the harmonic coefficients of the 

,/ 

I I 

Cul Cu3 Cu3 Cu2 

(a) (b) 

Fig. 5. (a) Potential of copper ions in CuTeBr obtained by connect- 
ing potentials of single p.d.f.s. The conduction path in CuTeBr 
connects sites Cu(l)  and Cu(2) via Cu(3). The left side of the 
figure shows the potential in the direction Cu( 1 )-Cu(3), the right 
part in the direction Cu(3)-Cu(2). (b) Pseudo potential obtained 
from the joint p.d.f, at 473 K. 

temperature factors if the split positions are refined 
from the centre of gravity (Megaw, 1969; Schulz, 
1972). Extrapolating back to 0 K these coefficients 
give the average displacement of split positions from 
the centre of gravity. This is also true for anharmonic 
descriptions of the p.d.f, if the Edgeworth or the 
Gram-Charlier  series (Johnson, 1970; Johnson & 
Levy, 1974) is used (Appendix 3). 

An example of split positions is the distribution of 
sodium ions in Na /3-alumina around the Beevers- 
Ross site. The structure of Na/3-alumina is built up 
of spinel blocks separated by planes. These planes, 
in which the sodium ions can diffuse, have two differ- 
ent sodium sites: the so-called Beevers-Ross site and 
the mid-oxygen site. A structure analysis at 80 K 
(Reidinger, 1979) revealed that the sodium ions near 
the Beevers-Ross site are distributed over three split 
positions. The Fourier map showed three separate 
maxima near this site which did not appear at higher 
temperatures. 

The potential of the sodium ions between 298 and 
913 K obtained from another structure investigation 
(Bachmann, 1983) is shown in Fig. 7. The lowest 
minimum corresponds to the Beevers-Ross site (the 
split positions are not resolved in this temperature 
range), the second minimum to the mid-oxygen site. 

t 6 -  
V 5 

4 ~ 4 

~ ,'1/ 2.3 

2 ~\ ii I 

o IVE 
I I 1 I I I I 

-3 - 2  -I 0 I 2 3 
x~ 

Fig. 6. Pseudo potential for two split positions at x 0 = - 1  and 
Xo = 1. Potential at each position: V= Vb(x-xo)  2. (1) T = 0  K; 
(2) Vb/kT=lO; (3) VJkT=I;  (4) VJkT=0.5; (5) Vt,/kT= 
0.25. 

1so- V[meV] 

1oo 

so 

BR MO NO BR 

Fig. 7. Pseudo potential in Na /3-alumina along the conduction 
path. BR: Beevers-Ross site, MO: mid-oxygen site. Tem- 
peratures: (I) 295 K; (2) 450 K; (3) 620 K: (4) 770 K; (5) 910 K. 
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The potential near the Beevers-Ross site becomes 
steeper with increasing temperature and the potential 
difference between the two sites seems to increase, 
thus showing the typical behaviour of a pseudo poten- 
tial in the case of split positions. The temperature 
dependence of the potential near the mid-oxygen site 
and the potential barrier is much smaller than the 
temperature dependence near the Beevers-Ross site. 
The apparent height of the potential barrier, the 
difference between the potential at the Beevers-Ross 
site and the highest potential along the conduction 
path, increases with increasing temperature from 45 
to 135 meV. The latter value is already very close to 
the activation energy of conductivity (0.17eV) 
(Wittingham & Huggins, 1971). 

Distinguishing between order and disorder 

If all positions are well separated they can be resolved 
in Fourier or PDF maps. Disorder is then exhibited 
by an underoccupation of sites or by interatomic 
distances which are too short for simultaneous occu- 
pation. 

The situation is more difficult for unresolved split 
positions which have only one maximum in Fourier 
or PDF maps even for an unlimited data set. 

A high static harmonic temperature factor in an 
extrapolation to 0 K is a first indication of split posi- 
tions. This method, however, is not always reliable. 
Since a set of parameters describing a point p.d.f, is 
not unique the exact value of the harmonic parameter 
may not be known. Furthermore, some anharmonic 
potentials also lead to a 'static' temperature factor in 
an extrapolation to 0 K (Mair, 1982b; Appendix 3). 

The strong temperature dependence of the pseudo 
potential is therefore a better way to detect unresolved 
split positions. Contrary to the pseudo potential of 
split positions, the potential in ordered crystals is, 
apart from small effects due to thermal expansion, 
found to be independent of temperature as long as 
the temperature is not close to a phase transition (see 
e.g. Mair, Barnea, Cooper & Rouse, 1974; Roberto, 
Battermann & Keating, 1974; Zucker & Schulz, 
1982b). Although this behaviour is generally obeyed 
by most materials, there are exceptions where the 
potential changes with temperature, such as materials 
with an unusual phonon temperature dependence, or 
ionic conductors, where the conductivity deviates 
from the Arrhenius law. To distinguish then between 
order and disorder one has to compare the actual 
change of the potential (e.g. the temperature depen- 
dence of the activation energy) with the temperature 
dependence of the potential derived from X-ray or 
neutron diffraction experiments. 

One of us (RB) gratefully acknowledges the sup- 
port of a Krupp doctoral fellowship. 

APPENDIX 1 

Expansion of a p.d.f, by extra positions 

Introducing extra positions to describe a p.d.f, means 
one describes the p.d.f, as a sum of functions which 
(in one dimension) have the following form: 

h(x) = a exp [ - b ( x -  x0)2], 

where the occupancy a, the temperature factor b and 
the position Xo have to be determined by refinement. 

The functions 

g , , ( x ) = e x p [ - b ( x - n )  z] 

= exp [ - b ( x  2 + n2)][exp (2bx)]" 

with b fixed and n a positive integer already form a 
complete set of functions as can be seen by com- 
parison with the functions u" and substituting 

u = exp (2bx). 

This proves that any p.d.f, can be described by addi- 
tional positions. Because of the freedom in choosing 
temperature factors and positions one has more func- 
tions available than are necessary. Hence the tem- 
perature factors and positions cannot be unam- 
biguously determined. 

APPENDIX 2 

The pseudo potential of unresolved split positions at 
high temperatures 

First the harmonic case is considered. Each split 
position xi has an occupancy ci with ~'-i ci x~ = 0 and 
~ ci--1. The potential at each position is assumed 
to have the same form. 

(a) The potential at different positions is given by 
a translation 

E(x)= Vo(x-x,)=(x-x,)B(x-x,). 

The pseudo potential is then given by 

P V ( x ) =  C - k T l n  Y~ ci e x p [ - ( x - x ~ ) B ( x - x ~ ) / k T ]  
i 

= C - k T l n  ~, c~ exp ~ ( f i - i , ) / k T ] .  
i 

The limit T-> oo gives 

P V ( x ) =  C +~'. c , f ( x - x i )  
i 

= C +~ c i ( x B x - 2 x B x i  +xiBxi) 
i 

= C + x B x - 2 x B ( ~  cixi) + ~  cixiBx, 
i i 

= C'  +xBx 

so that the pseudo potential assumes the same form 
as each of the potentials at a split position. 
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(b) In general the transformation from one split 
position to another involves not only translations but 
also rotations. The tensor B is therefore different for 
different positions. The high-temperature limit of the 
pseudo potential is then 

PV(x)=C +E c , f ( x - x , )  
i 

= C + ~  ci(xBix- 2xBixi +xiBixi) 
i 

: C '  + x ( ~  c i B i ) x - 2 x ~  c i B i x  i. 
i i 

In a symmetrical arrangement of split positions the 
last term in the above formula vanishes and det 
(~,i ciB~) = det B~ for all split positions. The averaging 
of the Bi leads to a more isotropic B for the pseudo 
potential. 

It is interesting to note that the high-temperature 
limit of the pseudo potential is harmonic, although 
the pseudo potential at low temperatures is very 
anharrnonic. 

In the anharmonic case the pseudo potential also 
becomes steeper with increasing temperature. The 
limit, however, is not equal to the original potential 
at a split position. This is shown in one dimension 
with an anharmonic potential expanded in a power 
series up to the fourth order: 

V/(x) = ~ ( x -  xi) 2 + ~ / ( x -  x i )  3 + a ( x -  x i )  4. 

The limit of the pseudo potential then becomes 

PV(x)=C +Z c ~ ( x - x , )  
i 

= C + E c i [ [ 3 ( x -  x i )  2 + ")/(x - x i )  3 + ¢~(x - xi) 4] 
i 

= C ' + [ 3 x 2 + , y x  3 + S X  4 

+(3y  E cix~-48 Y~ cix3)x 
i i 

+66(2  c,x~)x 2 
i 

: C' + yx + (13 + 68 E C i X 2 )  x 2  + "Y x3 + ¢~X4" 

i 

This deviation has for x = xi the same order of magni- 
tude as the contribution of the anharmonic terms to 
the overall potential. This approximation still gives 
a reasonable estimate of the original potential com- 
pared with the pseudo potential at low temperatures, 
as long as anharmonic terms are small compared with 
the harmonic terms, or the split positions are close 
together. 

APPENDIX 3 

Temperature dependence of the harmonic temperature 
factors for different potentials and split positions 

If anharmonic deviations of  a p.d.f, are described 
with the Gram-Charlier or the Edgeworth expansion 
omitting the first two terms, the harmonic temperature 

factor is proportional to the variance of the p.d.f, or 
the mean-square displacement from the mean posi- 
tion (Johnson & Levy, 1974). (If coefficients of an 
expansion of the potential are refined, the harmonic 
temperature factor gives the curvature.) In the high- 
temperature limit and for one dimension, temperature 
factor and potential are related by 

t ~  

Thar mO£ / x2 pdf (x) dx 
i i q  

- - c x ~  

f x exp [ - V ( x ) / k T ]  dx 

=-~f~ exp[ -V (x ) / kT]dx  
- oc: 

This gives for potentials of the form V(x)= ax" a 
harmonic temperature factor which is proportional 
to T >'. In cases where the potential deviates from the 
harmonic potential only at large x, the harmonic 
temperature factor rises faster if the potential 
becomes flatter and more slowly if the potential 
becomes steeper at high x. Extrapolating these tem- 
perature factors to 0 K from a limited temperature 
range may give high positive or negative intercepts 
although the harmonic part of the temperature factor 
goes to 0. Anharmonic potentials with a static tem- 
perature factor are given by Mair (1982b). 

The harmonic temperature factor of split positions 
in the averaged structure is proportional to the mean- 
square displacement of an atom from the centre of 
gravity which is given by the variance of the joint 
p.d.f. The variance of the joint p.d.f, can be given in 
terms of the variance of each single p.d.f, and its 
distance from the centre of gravity: 

e o  

j xixj PDF (x)d3x 2 
O'ij 

--00 
oo 

=Z w,, f (xi-x,,,-d,,i) 
rl d 

-- r.X~ 

× ( x j -  x , , j -d , j )  pdf ,(x)  d3x 

=Z f [(xi-x,,i)(xj-xi~)+d,,i(xj-x,,j) 
--00 

+ d,,j(xi - x,,) + d,od,, ] pdf, (x) d3x 

=~.. w,,( 2 +d,,,d,,j), O'n, ij 
rl 

where x, is the split position n, d, its vector to the 
centre of gravity, w, the occupancy and o'n,0 the 
variance of p.d.f.,. This formula is equal to the one 
obtained earlier (Schulz, 1972) for the harmonic case. 
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The variance of the joint p.d.f, can be split into 
two terms. The first term contains the variances of  all 
positions and depends on temperature, the second 
contains the distances of  the split positions from their 
centre of  gravity and is independent of  temperature. 
This allows the average distance of a split position 
from the centre of  gravity to be determined by 
extrapolating the harmonic temperature factor to 0 K 
(assuming the vibrations at 0 K are negligible). 
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I. Theory of the Bragg Case 

BY V. H O L t  

D e p a r t m e n t  o f  Solid State  Physics, Facul ty  o f  Science, J. E. Purkyn~ University, Kot ld~skd 2, 611 37 Brno, 
Czechoslovakia 

(Received 5 December 1983; accepted 30 May 1984) 

Abstract 

The optical coherence approach has been used for 
computing the reflection curves of crystals with 
spherical precipitates in the Bragg case and the curves 
were compared with those obtained from the usual 
kinematical theory. It has been shown that the asym- 
metry of the curves depends on the sign of the volume 
change caused by defects. Near their maximum the 
shape of the curves is not dependent on the type of 
deformation field of the precipitates and it depends 
on the properties of the perfect crystal. In comparison 
with the kinematical theory it has been demonstrated 
that the difference between the results of the dynami- 
cal theory and those of the kinematical theory are 
significant only near the maximum of the reflection 
cu rves .  

0108-7673/84/060675-05501.50 

I. Introduction 

In dislocation-free silicon crystals grown by the 
Czochralski method structural transformations take 
place during the technological process, namely pre- 
cipitates of other phases or other microdefects can 
occur. The defects affect the electrical properties of 
the semiconductors or they can cause the formation 
of dislocation loops. 

X-ray methods of investigating microdefect forma- 
tion are advantageous owing to their non-destruc- 
tivity. The theoretical description of X-ray diffraction 
from crystals with randomly distributed small defects 
has been given in the kinematical approximation 
in the theory of diffuse scattering in papers by 
Dederichs (1971), Larson & Schmatz (1980) and 
Trinkaus (1972). The kinematical theory enables us 
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